Graph-Based Decoding in the Presence of ISI

Linear Programming and Message Passing

Mohammad H. Taghavi Paul H. Siegel

(mtaghavi, psiegel)@ucsd.edu

Center for Magnetic Recording University of California, San Diego

May, 2007

But First...

Adaptive LP: Start with a small problem and add the constraints adaptively.

M. H. Taghavi and P. H. Siegel, "Adaptive methods for linear programming decoding," *preprint available at ArXiv*

Outline

- Graph-Based Detection
- 2 Uncoded Detection
 - Performance Analysis
 - Simulation Results
- Combined Equalization and LDPC Decoding
 - Simulation Results
- 4 Conclusion

Outline

- Graph-Based Detection
- Uncoded Detection
 - Performance Analysis
 - Simulation Results
- 3 Combined Equalization and LDPC Decoding
 - Simulation Results
- Conclusion

Combined Channel Equalization and Decoding

- Gain obtained by combining equalization and decoding
- Need to exchange soft information between them.
 - SOVA / BCJR for equalization + message-passing
 - Exponential complexity in memory length
- Incorporate the ISI channel into the decoding graph
 - Can combine with the Tanner graph of the LDPC code
 - Use linear programming (LP) or iterative message passing (IMP) for decoding
- Kurkoski et al.: Bit-based detection
 - 4-cycles in the graph

Combined Channel Equalization and Decoding

- Gain obtained by combining equalization and decoding
- Need to exchange soft information between them.
 - SOVA / BCJR for equalization + message-passing
 - Exponential complexity in memory length
- Incorporate the ISI channel into the decoding graph
 - Can combine with the Tanner graph of the LDPC code
 - Use linear programming (LP) or iterative message passing (IMP) for decoding
- Kurkoski et al.: Bit-based detection
 - 4-cycles in the graph

Goal: Find a graph representation where LP can be applied.

ML Detection in a PR Channel

$$y_t = \sum_{i=0}^{\mu} h_i \tilde{x}_{t-i}$$

Look for the codeword that minimizes

$$\begin{split} \sum_{t} (r_{t} - y_{t})^{2} &= \sum_{t} \left[r_{t}^{2} - 2r_{t} \sum_{i} h_{i} \tilde{x}_{t-i} + \left(\sum_{i} h_{i} \tilde{x}_{t-i} \right)^{2} \right] \\ &= \sum_{t} \left[\underbrace{r_{t}^{2} + \sum_{i} h_{i}^{2} \tilde{x}_{t-i}^{2} - 2r_{t} \sum_{i} h_{i} \tilde{x}_{t-i}}_{\text{linear}} + \underbrace{\sum_{i \neq j} h_{i} h_{j} \tilde{x}_{t-i} \tilde{x}_{t-j}}_{\text{nonlinear}} \right] \end{split}$$

Optimization problem in general matrix form

Minimize
$$-\underline{q}^T \underline{\tilde{x}} + \frac{1}{2} \underline{\tilde{x}}^T P_2^{\underline{\tilde{x}}}$$
 Subject to
$$x \in \mathcal{C}$$

- The general form of an integer quadratic programming problem (IQP)
- If no coding, $C = \{0, 1\}^n$

ML Detection in a PR Channel

$$y_t = \sum_{i=0}^{\mu} h_i \tilde{x}_{t-i}$$

Look for the codeword that minimizes

$$\sum_{t} (r_{t} - y_{t})^{2} = \sum_{t} \left[r_{t}^{2} - 2r_{t} \sum_{i} h_{i} \tilde{x}_{t-i} + \left(\sum_{i} h_{i} \tilde{x}_{t-i} \right)^{2} \right]$$

$$= \sum_{t} \left[\underbrace{r_{t}^{2} + \sum_{i} h_{i}^{2} \tilde{x}_{t-i}^{2}}_{const} - 2r_{t} \sum_{i} h_{i} \tilde{x}_{t-i} + \underbrace{\sum_{i \neq j} h_{i} h_{j} \tilde{x}_{t-i} \tilde{x}_{t-j}}_{nonlinear} \right]$$

Optimization problem in general matrix form

Minimize
$$-\underline{q}^T \underline{\tilde{x}} + \frac{1}{2} \underline{\tilde{x}}^T P \underline{\tilde{x}}$$
 Subject to
$$\underline{x} \in \mathcal{C}$$

- The general form of an integer quadratic programming problem (IQP)
- If no coding, $C = \{0, 1\}^n$

Linearization of the Objective Function

Define state variables:

$$0 \longrightarrow 1$$

$$1 \longrightarrow -1$$

$$\tilde{z}_{t}^{j}$$

 $ilde{z}_{t,j} = ilde{x}_t \cdot ilde{x}_{t-j}$ or equivalently $z_{t,j} = x_t \oplus x_{t-j} \mod 2$

The IQP can be rewritten as a decoding a binary linear code:

$$\begin{array}{ll} \text{Minimize} & \sum_t q_t x_t + \sum_t \sum_j \lambda_{t,j} z_{t,j}, \\ \text{Subject to} & \underline{x} \in \mathcal{C}, \\ & z_{t,j} \oplus x_t \oplus x_{t-j} = 0 \mod 2, \ j = 1, \dots, \mu, \\ & t = j+1, \dots, n \end{array}$$

For the equalization problem

$$q_t = \sum_i h_i r_{t+i} \leftarrow \text{Output of matched filter}$$

$$\lambda_{t,j} = \lambda_j = -\sum_{i=0}^{\mu-j} h_i h_{i+j} \ \leftarrow -1 imes ext{Correlation function of the channel}$$

Tanner Graph Representation

PR layer:

- $n\mu$ degree-1 state bit nodes and degree-3 check nodes
- cycles of length 6 or more
- LP decoding
 - ullet Parity check c with neighborhood N_c is relaxed to

$$\sum_{i \in V} x_i - \sum_{i \in N_c \setminus V} x_i \le |V| - 1, \ \forall \ V \subset N_c \text{ s.t. } |V| \text{ is odd}$$

- and $x_i \in \{0, 1\}$ is relaxed to $0 \le x_i \le 1$.
- ML certificate property
- IMP Decoding
 - Use the objective coefficients as estimates of the log-likelihood ratios (LLR)
 - Complexity per iteration is linear in block length and channel memory size

Tanner Graph Representation

- PR layer:
 - $n\mu$ degree-1 state bit nodes and degree-3 check nodes
 - cycles of length 6 or more
- LP decoding
 - Parity check c with neighborhood N_c is relaxed to

$$\sum_{i \in V} x_i - \sum_{i \in N_C \setminus V} x_i \leq |V| - 1, \ \, \forall \, \, V \subset N_C \text{ s.t. } |V| \text{ is odd}$$

- and $x_i \in \{0, 1\}$ is relaxed to $0 \le x_i \le 1$.
- ML certificate property
- IMP Decoding
 - Use the objective coefficients as estimates of the log-likelihood ratios (LLR)
 - Complexity per iteration is linear in block length and channel memory size

Tanner Graph Representation

- PR layer:
 - $n\mu$ degree-1 state bit nodes and degree-3 check nodes
 - cycles of length 6 or more
- LP decoding
 - Parity check c with neighborhood N_c is relaxed to

$$\sum_{i \in V} x_i - \sum_{i \in N_C \setminus V} x_i \leq |V| - 1, \ \, \forall \, \, V \subset N_C \text{ s.t. } |V| \text{ is odd}$$

- and $x_i \in \{0, 1\}$ is relaxed to $0 \le x_i \le 1$.
- ML certificate property
- IMP Decoding
 - Use the objective coefficients as estimates of the log-likelihood ratios (LLR)
 - Complexity per iteration is linear in block length and channel memory size

Outline

- Graph-Based Detection
- Uncoded Detection
 - Performance Analysis
 - Simulation Results
- Combined Equalization and LDPC Decoding
 - Simulation Results
- Conclusion

Project the Problem Back to *n*-D

• The relaxation of the binary constraint $z_{t,j} = x_t \oplus x_{t-j}$ can be simplified as

$$|x_t - x_{t-j}| \le z_{t,j} \le 1 - |x_t + x_{t-j} - 1|.$$

- Depending on the sign of its coefficient, $\lambda_{t,j}$, $z_{t,j}$ will be equal to one of the two bounds.
- Solve $z_{t,j}$ in terms of x_t , and project the problem back to the n-D space:

Minimize
$$f(\underline{x}) = \sum_t q_t x_t + \sum_{t,j:\lambda_{t,j}>0} |\lambda_{t,j}| |x_t - x_{t-j}|$$

$$+ \sum_{t,j:\lambda_{t,j}<0} |\lambda_{t,j}| |x_t + x_{t-j} - 1|,$$
 Subject to
$$0 < x_t < 1, \ \forall t = 1, \dots, n$$

Convex, piece-wise linear objective function.

Project the Problem Back to *n*-D

• The relaxation of the binary constraint $z_{t,j} = x_t \oplus x_{t-j}$ can be simplified as

$$|x_t - x_{t-j}| \le z_{t,j} \le 1 - |x_t + x_{t-j} - 1|.$$

- Depending on the sign of its coefficient, $\lambda_{t,j}$, $z_{t,j}$ will be equal to one of the two bounds.
- Solve $z_{t,j}$ in terms of x_t , and project the problem back to the n-D space:

$$\begin{array}{ll} \text{Minimize} & f(\underline{x}) = \sum_t q_t x_t + \sum_{t,j:\lambda_{t,j}>0} |\lambda_{t,j}| |x_t - x_{t-j}| \\ & + \sum_{t,j:\lambda_{t,j}<0} |\lambda_{t,j}| |x_t + x_{t-j} - 1|, \\ \\ \text{Subject to} & 0 < x_t < 1, \ \forall t = 1, \dots, n \end{array}$$

Convex, piece-wise linear objective function.

LP-Proper Channels: Guaranteed ML Performance

Theorem

LP detection is guaranteed to find the ML solution if and only if the channel satisfies:

Weak Nonnegativity Condition (WNC): Every check node $c_{t,j}$ that is on a cycle in the Tanner graph corresponds to a nonnegative coefficient: $\lambda_{t,j} \geq 0$.

- We call them LP-proper channels.
- Can interpret the problem as generalized min-cut

Corollary

The solution $\hat{\underline{x}}$ of LP detection on any channel is in $\{0, \frac{1}{2}, 1\}^n$.

LP-Proper Channels: Guaranteed ML Performance

Theorem

LP detection is guaranteed to find the ML solution if and only if the channel satisfies:

Weak Nonnegativity Condition (WNC): Every check node $c_{t,i}$ that is on a cycle in the Tanner graph corresponds to a nonnegative coefficient: $\lambda_{t,i} > 0$.

- We call them LP-proper channels.
- Can interpret the problem as generalized min-cut

Corollary

The solution \hat{x} of LP detection on any channel is in $\{0, \frac{1}{2}, 1\}^n$.

Simulation: LP and MSA

OHI:
$$h(D) = 1 - D - 0.5D^2 - 0.5D^3$$
 (satisfies WNC) $\leftarrow LP$ -proper

2 CH2:
$$h(D) = 1 + D - D^2 + D^3 \leftarrow Asymptotically LP-proper$$

Question

- LP detection has two dominant types of failure
 - Type 1 (E_1): ML gives the correct solution \underline{x} , but LP gives a fractional solution, $\hat{\underline{x}}$.
 - Type 2 (E2): Both LP and ML fail to find the correct solution.
- Two extreme cases:
 - Pr[E₁] ≪ Pr[E₂] at high SNR: LP asymptotically achieves ML performance ←
 Asymptotically LP-Proper Channel
 - $\Pr[E_1] \ge \beta > 0$, \forall SNR: LP performs poorly \leftarrow *LP-Improper Channel*
- Sufficient condition for type-1 failure:

$$\exists \underline{\hat{x}} \in \left\{0, \frac{1}{2}, 1\right\}^n : \ f(\underline{\hat{x}}) - f(\underline{x}) \le 0$$

- Separate the signal and noise terms: $f(\hat{x}) f(x) = \delta + \eta$
- If $\delta \leq 0$ for some $(\underline{x}, \hat{\underline{x}})$, the channel is LP-improper.
 - To find the dominant error event, we should optimize over Agand £. > 4 3 >

Question

- LP detection has two dominant types of failure
 - Type 1 (E_1): ML gives the correct solution \underline{x} , but LP gives a fractional solution, $\hat{\underline{x}}$.
 - Type 2 (E2): Both LP and ML fail to find the correct solution.
- Two extreme cases:
 - Pr[E₁] ≪ Pr[E₂] at high SNR: LP asymptotically achieves ML performance ←
 Asymptotically LP-Proper Channel
 - $Pr[E_1] \ge \beta > 0$, \forall SNR: LP performs poorly \leftarrow *LP-Improper Channel*
- Sufficient condition for type-1 failure:

$$\exists \underline{\hat{x}} \in \left\{0, \frac{1}{2}, 1\right\}^n : \ f(\underline{\hat{x}}) - f(\underline{x}) \le 0$$

- Separate the signal and noise terms: $f(\hat{x}) f(\underline{x}) = \delta + \eta$
- If $\delta \leq 0$ for some $(\underline{x}, \hat{\underline{x}})$, the channel is LP-improper.
 - To find the dominant error event, we should optimize over √and £. , ← ≥ >

Question

- LP detection has two dominant types of failure
 - Type 1 (E_1): ML gives the correct solution \underline{x} , but LP gives a fractional solution, $\hat{\underline{x}}$.
 - Type 2 (E2): Both LP and ML fail to find the correct solution.
- Two extreme cases:
 - Pr[E₁] ≪ Pr[E₂] at high SNR: LP asymptotically achieves ML performance ←
 Asymptotically LP-Proper Channel
 - $Pr[E_1] \ge \beta > 0$, \forall SNR: LP performs poorly \leftarrow *LP-Improper Channel*
- Sufficient condition for type-1 failure:

$$\exists \underline{\hat{x}} \in \left\{0, \frac{1}{2}, 1\right\}^n : \ f(\underline{\hat{x}}) - f(\underline{x}) \le 0$$

- Separate the signal and noise terms: $f(\hat{x}) f(x) = \delta + \eta$
- If $\delta \leq 0$ for some $(\underline{x}, \hat{\underline{x}})$, the channel is LP-improper.
- To find the dominant error event, we should optimize over *and £. * * *

Question

- LP detection has two dominant types of failure
 - Type 1 (E_1): ML gives the correct solution \underline{x} , but LP gives a fractional solution, $\hat{\underline{x}}$.
 - Type 2 (E2): Both LP and ML fail to find the correct solution.
- Two extreme cases:
 - Pr[E₁] ≪ Pr[E₂] at high SNR: LP asymptotically achieves ML performance ←
 Asymptotically LP-Proper Channel
 - $Pr[E_1] \ge \beta > 0$, \forall SNR: LP performs poorly \leftarrow *LP-Improper Channel*
- Sufficient condition for type-1 failure:

$$\exists \underline{\hat{x}} \in \left\{0, \frac{1}{2}, 1\right\}^n : \ f(\underline{\hat{x}}) - f(\underline{x}) \le 0$$

- Separate the signal and noise terms: $f(\hat{x}) f(x) = \delta + \eta$
- If $\delta \leq 0$ for some $(\underline{x}, \hat{\underline{x}})$, the channel is LP-improper.
 - To find the dominant error event, we should optimize over \underline{x} and \hat{x} .

All-½ Event

• The most interesting case is when $\hat{\underline{x}} = [\frac{1}{2}, \cdots, \frac{1}{2}]$:

Lemma

If the transmitted sequence is i.i.d. Bernouli(1/2), as $n \to \infty$

$$\delta
ightarrow n \Big[|\lambda_0| - \sum_{i=1}^{\mu} |\lambda_i| \Big] \hspace{1cm} ext{and} \hspace{1cm} \varsigma^2
ightarrow \sigma^2 n \big[|\lambda_0| \big]$$

• Natural to define $\delta_{\infty} \triangleq \frac{1}{|\lambda_0|} \left(|\lambda_0| - \sum_{j=1}^{\mu} |\lambda_j| \right)$

Theorem

The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of transmitted symbols goes to 1 as the block length n goes to infinity for any SNR, i.e., the channel is LP-improper, if $\delta_{\infty} < 0$.

Lemma

LP-proper channels satisfy $\delta_{\infty}>rac{1}{2}$

All-½ Event

• The most interesting case is when $\hat{\underline{x}} = [\frac{1}{2}, \cdots, \frac{1}{2}]$:

Lemma

If the transmitted sequence is i.i.d. Bernouli(1/2), as $n \to \infty$

$$\delta
ightarrow n \Big[|\lambda_0| - \sum_{i=1}^{\mu} |\lambda_i| \Big] \qquad \quad \text{and} \qquad \quad \varsigma^2
ightarrow \sigma^2 n \big[|\lambda_0| \big]$$

• Natural to define $\delta_{\infty} \triangleq \frac{1}{|\lambda_0|} \left(|\lambda_0| - \sum_{j=1}^{\mu} |\lambda_j| \right)$

Theorem

The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of transmitted symbols goes to 1 as the block length n goes to infinity for any SNR, i.e., the channel is LP-improper, if $\delta_{\infty} < 0$.

Lemma

LP-proper channels satisfy $\delta_{\infty}>rac{1}{2}$

All-½ Event

• The most interesting case is when $\hat{\underline{x}} = [\frac{1}{2}, \cdots, \frac{1}{2}]$:

Lemma

If the transmitted sequence is i.i.d. Bernouli(1/2), as $n \to \infty$

$$\delta
ightarrow n \Big[|\lambda_0| - \sum_{i=1}^{\mu} |\lambda_i| \Big] \hspace{1cm} ext{and} \hspace{1cm} \varsigma^2
ightarrow \sigma^2 n \big[|\lambda_0| \big]$$

• Natural to define $\delta_{\infty} \triangleq \frac{1}{|\lambda_0|} \left(|\lambda_0| - \sum_{j=1}^{\mu} |\lambda_j| \right)$

Theorem

The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of transmitted symbols goes to 1 as the block length n goes to infinity for any SNR, i.e., the channel is LP-improper, if $\delta_{\infty} < 0$.

Lemma

LP-proper channels satisfy $\delta_{\infty} > \frac{1}{2}$.

Simulation Results: WER vs. δ_{∞}

- 200 randomly-generated channels of memory size 4.
- The channel taps are i.i.d. $\sim \mathcal{N}(0, 1)$.
- Normalized to have unit power gain:

$$|\lambda_0| = \sum_j |h_i|^2 = 1$$

- SNR=11dB
- Strong correlation between the performance and δ_{∞} .

Outline

- Graph-Based Detection
- Uncoded Detection
 - Performance Analysis
 - Simulation Results
- Combined Equalization and LDPC Decoding
 - Simulation Results
- Conclusion

Coded LP Detection

- Add the relaxed parity-check constraints to the set of constraints.
- These constraints cut some of the existing pseudo-codewords, and add some new ones.

Corollary

Consider a linear code with no "trivial" (i.e., degree-1) parity check, used on a channel with $\delta_{\infty} <$ 0. Then, coded LP detection on this system has a WER bounded below by a constant at all SNR for large block lengths.

Proof

Follows from the analysis of uncoded detection and the fact that the all- $\frac{1}{2}$ vector satisfies all the non-trivial constraints of any linear code.

Coded LP Detection

- Add the relaxed parity-check constraints to the set of constraints.
- These constraints cut some of the existing pseudo-codewords, and add some new ones.

Corollary

Consider a linear code with no "trivial" (i.e., degree-1) parity check, used on a channel with $\delta_{\infty} <$ 0. Then, coded LP detection on this system has a WER bounded below by a constant at all SNR for large block lengths.

Proof.

Follows from the analysis of uncoded detection and the fact that the all- $\frac{1}{2}$ vector satisfies all the non-trivial constraints of any linear code.

Coded IMP Detection

- Min-Sum Algorithm (MSA)
 - Use the LP coefficients $\{q_t\}$ and $\{\lambda_{t,j}\}$ as the costs.
- Sum-Product Algorithm (SPA)
 - Estimate "log-likelihood ratios" by multiplying $\{q_t\}$ and $\{\lambda_{t,i}\}$ by $2/\sigma^2$.
 - In the absence of ISI reduce to the true LLRs.

- Use a selective rule for combining messages in order to mitigate the effect of cycles in the PR layer.
 - To calculate the messages going to the PR layer only use the messages coming from the LDPC layer:

Coded IMP Detection

- Min-Sum Algorithm (MSA)
 - Use the LP coefficients $\{q_t\}$ and $\{\lambda_{t,j}\}$ as the costs.
- Sum-Product Algorithm (SPA)
 - Estimate "log-likelihood ratios" by multiplying $\{q_t\}$ and $\{\lambda_{t,i}\}$ by $2/\sigma^2$.
 - In the absence of ISI reduce to the true LLRs.

- Use a selective rule for combining messages in order to mitigate the effect of cycles in the PR layer.
 - To calculate the messages going to the PR layer only use the messages coming from the LDPC layer:

Simulation Results

- A randomly-generated regular LDPC code of length 200, rate 1/4, and variable degree 3.
- The following PR channels:
 - **1** No-ISI Channel: h(D) = 1,
 - ② EPR4 Channel: $h(D)=1+D-D^2-D^3 \ (\delta_{\infty}=0,$ LP-improper),
 - **Modified EPR4:** $h(D) = 1 + D D^2 + D^3 \ (\delta_{\infty} = \frac{1}{2}, \text{Asymptotically LP-proper)},$
 - **9 PR4 Channel:** $h(D) = 1 D^2$ $(\delta_{\infty} = \frac{1}{2}, \text{LP-proper}).$

More on the EPR4 Channel

- With coding, there is a large gap between LP, MSA, and SPA.
 - Unlike LP, IMP works on LP-improper channels.
- Some gain for MSA by selective combining

Outline

- Graph-Based Detection
- Uncoded Detection
 - Performance Analysis
 - Simulation Results
- Combined Equalization and LDPC Decoding
 - Simulation Results
- 4 Conclusion

Conclusion

Summary

- Proposed a linear relaxation of the equalization problem
- Easily applicable to combined equalization and decoding with LP or message passing
- Derived necessary and sufficient conditions for optimal performance
- Characterized the error events
- IMP is superior to LP in combined channel equalization/decoding

Outlook

- Modifying the constraints/combining rules to improve on LP-improper channels
- Applications in the context of PRML detection
- Applications to 2-D ISI channels
- Exact performance analysis, especially with coding

